
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Minimisation of costs by using disintegration at a full-scale anaerobic digestion plant

pmid: 12361040
Various half-scale and lab-scale investigations have already shown that the disintegration of excess sludge is a possible pre-treatment to optimise anaerobic digestion. To control these results different methods of disintegration were investigated at a full-scale plant. Two stirred ball mills and a plant for oxidation with ozone were applied. A positive influence of disintegration on the anaerobic biodegradability can be established with application of a stirred ball mill. Biogas production as well as the degree of degradation were increased by about 20%. Laboratory investigations also validate that disintegration increases the polymer demand and leads to a lower solid content after dewatering. A higher pollution level of process water after dewatering even with ammonia and COD corroborates the results of the anaerobic degradation. Capital costs for the stirred ball mill, costs for energy, manpower and maintenance can be covered if the specific costs for disposal are high. If the development of costs in future and the current discussion about sludge disposal are taken into account sewage sludge disintegration can be a suitable technique to minimise costs at waste water treatment plants.
Energy-Generating Resources, Polymers, Waste Disposal, Fluid, Water Purification, Bacteria, Anaerobic, Bioreactors, Oxidants, Photochemical, Ozone, Cost Savings, Costs and Cost Analysis
Energy-Generating Resources, Polymers, Waste Disposal, Fluid, Water Purification, Bacteria, Anaerobic, Bioreactors, Oxidants, Photochemical, Ozone, Cost Savings, Costs and Cost Analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
