Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science & Tech...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Science & Technology
Article . 2003 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Operating feasibility of anaerobic whey treatment in a stirred sequencing batch reactor containing immobilized biomass

Authors: José Alberto Domingues Rodrigues; Marcelo Zaiat; Suzana Maria Ratusznei;

Operating feasibility of anaerobic whey treatment in a stirred sequencing batch reactor containing immobilized biomass

Abstract

The scope of this work was to evaluate the operating feasibility of anaerobic whey treatment in a stirred sequencing batch reactor (ASBR) containing biomass immobilized on inert support. Assays were performed using 8-hour cycles and agitation rate of 200 rpm at 30 ± 1¡C, for treating cheese whey containing 500 to 4,000 mgCOD/L, which corresponded to a volumetric organic load (VOL) of 0.81 to 5.7 gCOD/L.d. Stability and high organic matter removal of about 96% were achieved at effluent concentration below 160 mgCOD/L for non filtered samples. Operating stability of the reactor was shown to be strongly dependent on the alkalinity supplementing strategy during the assay, especially during the startup period, where NaHCO3 supplementation was approximately 20Ð30% of the chemical oxygen demand (mgNaHCO3/mgCOD). After startup, alkalinity supplementation could be reduced down to 10% maintaining efficiency and stability. Moreover, proper homogenization of the system through mechanical agitation was also shown to be indispensable, especially with increasing organic load.

Keywords

Industrial Waste, Milk Proteins, Waste Disposal, Fluid, Oxygen, Bacteria, Anaerobic, Dairying, Bioreactors, Whey Proteins, Animals, Cattle, Biomass

Powered by OpenAIRE graph
Found an issue? Give us feedback