Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science & Tech...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Science & Technology
Article . 2005 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In-situ monitoring of microbial biomass in wetland mesocosms

Authors: Alan Werker; J. McHenry;

In-situ monitoring of microbial biomass in wetland mesocosms

Abstract

The objective of the present investigation has been to combine tracer principles and a hydrolytic microbial activity assay using fluorescein diacetate to monitor changes in microbial biomass within subsurface flow wetland mesocosms. The mesocosm hydrolytic activity was referenced to activated sludge concentrations treating a typical domestic wastewater at full scale. Microbial biomass activity levels within four laboratory wetland mesocosms treating a synthetic domestic wastewater were routinely monitored over a 21-week period of plant growth and rhizosphere development. Although above ground plant mass and tracer dispersion numbers suggested progressive root zone development, plant growth did not result in any measurable enhancement in microbial activity when compared to a mesocosm operating without plants. Dispersion numbers also suggested a reduction in the mass transport kinetics in these planted mesocosms. In-situ biomass monitoring enabled the assessment of a characteristic response in terms of the steady-state food to microorganism (F/M) ratio that was observed in mesocosms receiving both low and high organic loading. Wetland treatment performance is sensitive to the degree to which bed volume is exploited in terms of wastewater flow to regions of bioactivity. The in-situ reactive tracer technique for mesocosm biomass monitoring provided an assessment of the collective substratum and rhizosphere microbial biomass in direct contact with wastewater contaminants. Thus, in-situ biomass monitoring has application in further understanding of plant function and strategies for plant implementation in wetland research and development.

Related Organizations
Keywords

Bacteria, Waste Disposal, Fluid, Biodegradation, Environmental, Water Movements, Biomass, Water Microbiology, Ecosystem, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
gold