
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Anaerobic digestion as a core technology in sustainable management of organic matter

In the past decades, anaerobic digestion (AD) has steadily gained importance. However, the technology is not regarded as a top priority in science policy and in industrial development at present. In order for AD to further develop, it is crucial that AD profits from the current fuel issues emerging in the international arena. AD can provide low-cost treatment of sewage and solid domestic wastes, which represents a vast application potential that should be promoted in the developing world. Furthermore, the developments in the last decades in the domain of anaerobic microbiology and technology have generated some interesting niches for the application of AD, such as anaerobic nitrogen removal and the treatment of chlorinated organics. Recently, AD has also generated some serendipities, such as the use of AD in processes for sulphur and calcium removal and the coupling of AD with microbial fuel cells. The international developments in terms of bio-refineries and CO2-emission abatement are of crucial importance with respect to the impetus that AD will receive in the coming decade. There should be little doubt that by placing the focus of AD on the production of green energy and clean nutrients, the future of AD will be assured.
- University of Queensland Australia
- Ghent University Belgium
- University of Queensland Australia
- University of Nairobi Kenya
- Kenyatta University Kenya
Bioelectric Energy Sources, Nitrogen, Conservation of Energy Resources, Phosphorus, Waste Disposal, Fluid, Refuse Disposal, Water Purification, Bacteria, Anaerobic, Bioreactors, 090409 Wastewater Treatment Processes, Chlorine
Bioelectric Energy Sources, Nitrogen, Conservation of Energy Resources, Phosphorus, Waste Disposal, Fluid, Refuse Disposal, Water Purification, Bacteria, Anaerobic, Bioreactors, 090409 Wastewater Treatment Processes, Chlorine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).83 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
