
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effective growth of dinoflagellate Prorocentrum minimum by cultivating the cells using municipal wastewater as nutrient source

doi: 10.2166/wst.2013.325
pmid: 24037162
Several studies have been conducted worldwide in order to develop a more economical method for mass algal cultivation so that more cost-effective biomass production can be accessed. One of the directions is to reduce production costs by using wastewater as a nutrient source in algal cell cultivation. The growth ability of a red-tide causative dinoflagellate species, Prorocentrum minimum, in various concentrations of local urban wastewater was examined in this study. The highest exponential growth rate and maximum cell density (MCD) were achieved when autoclaved 10% wastewater was used for cell cultivation, although the cells could survive in 0.01–100% wastewater. Both growth rate and MCD of the cells in wastewater were found to be substantially higher than that in optimized L1 culture medium. This research highlights the potential of using wastewater as a cost-effective approach for mass cultivation of dinoflagellate cells with consequent production of valuable microalgal biomass.
- Open University of Hong Kong China (People's Republic of)
- Open University of Hong Kong Hong Kong
- Open University of Hong Kong China (People's Republic of)
Dinoflagellida, Biomass, Wastewater, Culture Media
Dinoflagellida, Biomass, Wastewater, Culture Media
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
