
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The impact of influent total ammonium nitrogen concentration on nitrite-oxidizing bacteria inhibition in moving bed biofilm reactor

doi: 10.2166/wst.2013.757
pmid: 24647188
The application of nitrification–denitrification over nitrite (nitritation–denitritation) with municipal (i.e. diluted and cold (or low-temperature)) wastewater can substantially improve the energy balance of municipal wastewater treatment plants. For the accumulation of nitrite, it is crucial to inhibit nitrite-oxidizing bacteria (NOB) with simultaneous proliferation of ammonium-oxidizing bacteria (AOB). The present study describes the effect of the influent total ammonium nitrogen (TAN) concentration on AOB and NOB activity in two moving bed biofilm reactors operated as sequencing batch reactors (SBR) at 15 °C (SBR I) and 21 °C (SBR II). The reactors were fed with diluted reject water containing 600, 300, 150 and 75 mg TAN L−1. The only factor limiting NOB activity in these reactors was the high concentrations of free ammonia and/or free nitrous acid (FNA) during the SBR cycles. Nitrite accumulation was observed with influents containing 600, 300 and 150 mg TAN L−1 in SBR I and 600 and 300 in SBR II. Once nitrate production established in the reactors, the increase of influent TAN concentration up to the original 600 mg TAN L−1 did not limit NOB activity. This was due to the massive development of NOB clusters throughout the biofilm that were able to cope with faster formation of FNA. The results of the fluorescence in situ hybridization analysis preliminarily showed the stratification of bacteria in the biofilm.
- Techniserv (Czechia) Czech Republic
- Ghent University Belgium
- Slovak University of Technology in Bratislava Slovakia
- Instituto de Tecnología Química Spain
- University of Chemistry and Technology Czech Republic
Nitrous Acid, Water Purification, Bioreactors, Ammonia, Biofilms, Ammonium Compounds, Biomass, Oxidation-Reduction, In Situ Hybridization, Fluorescence
Nitrous Acid, Water Purification, Bioreactors, Ammonia, Biofilms, Ammonium Compounds, Biomass, Oxidation-Reduction, In Situ Hybridization, Fluorescence
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
