Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance of a solar energy-assisted heat pump heating system: analysis and correlation of field-collected data

Authors: Williams, Ronald Craig;

Performance of a solar energy-assisted heat pump heating system: analysis and correlation of field-collected data

Abstract

An analysis of building energy usage and thermal load for the Solar Building during the winter heating seasons of 1974-75 and 1975-76 is reported. The one-story office building is located in Albuquerque, New Mexico. Its mechanical heating and cooling equipment is categorized as a solar-assisted heat pump system consisting of solar collectors, water thermal storage, a water-to-water heat pump and five smaller water-to-air heat pump packaged units. Building energy usage was examined with emphasis on the time of day energy was consumed and the source from which the energy was obtained; i.e., from the electricity for lighting, office equipment and mechanical equipment, and from the heat output of the thermal storage and heat pumps. The rate of electrical energy consumption was found to be very dependent on building use. High rates of electrical energy usage during occupied periods required cooling during parts of even the coldest days. Mechanical equipment heating was found to vary as a function of building usage as well as a function of the indoor-outdoor temperature differential. Energies supplied to and withdrawn from the building were examined and are presented for hourly, daily, and seasonal periods. A comparison of the two heating seasons was made. Energy losses more » and gains from the building to the surroundings were examined for both steady-state and transient load profiles. Envelope conductive heat losses and losses due to infiltration and ventilation were calculated using actual weather data through the use of the Building Environmental Analysis Program (BEAP). The effect of building thermal storage on heating and cooling loads was examined and a set of building balance-point temperatures was established. Comparisons between the building energy consumption and a calculated load were made for hourly, daily, and seasonal periods. « less

Country
United States
Related Organizations
Keywords

550, New Mexico, Performance, Storage, Energy Consumption, Solar-Assisted Heat Pumps, Solar Heating Systems, Heating Load, Office Buildings, Information, Data Forms, Buildings, Daily Variations, 32 Energy Conservation, Data, Appliances, Losses, 320102 -- Energy Conservation, Heat Pumps, 14 Solar Energy, Solar Cooling Systems, And Utilization, Air Infiltration, Heat Storage, Graphs, Solar Air Conditioners, & Utilization-- Office Buildings-- (-1987), Consumption, Monitoring, Heat Exchangers, Electric Appliances, Containers, 333, Southwest Region, Variations 140901* -- Solar Thermal Utilization-- Space Heating & Cooling, Energy Losses, Air Conditioners, Heat Losses, Usa, Ambient Temperature, Water Source Heat Pumps, Energy Storage, Ventilation, Heating Systems, North America, Sensible Heat Storage, Tanks, Seasonal Variations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average