Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of temperature on the energy-absorbing characteristics of redwood. [For plutonium air transportable package]

Authors: Von Riesemann, W.A.; Guess, T.R.;

Effects of temperature on the energy-absorbing characteristics of redwood. [For plutonium air transportable package]

Abstract

Redwood is used as an impact energy-absorbing material in the plutonium air transportable (PAT) package. To function properly the redwood must retain its properties over a wide temperature range. Since data were not available, an experimental program was conducted on 3-inch cubes of redwood over the temperature range of -40 to 230/sup 0/F (-40 to 110/sup 0/C). The specific energy, average crushing stress, and percent compression at bottoming are presented for the 22 specimens tested. Average values show an approximately 10% decrease in the specific energy and average crushing stress for a temperature rise from 70 to 230/sup 0/F (21 to 110/sup 0/C); and an approximate 30% increase in these quantities for a decrease from 70 to -40/sup 0/F (21 to -40/sup 0/C). 10 figs.

Country
United States
Related Organizations
Keywords

Crushing, Transuranium Elements 420204* -- Engineering-- Shipping Containers, Energy Absorption, Handling, Testing, Temperature Dependence, Transport, Elements, 11 Nuclear Fuel Cycle And Fuel Materials, Wood, Plutonium, Absorption, Air Transport, Actinides, 050900 -- Nuclear Fuels-- Transport, & Storage, Packaging, Metals, Materials Testing, 42 Engineering, Destructive Testing, Comminution

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Top 10%
Average
Related to Research communities
Energy Research