Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Critical Vacancy-Driven Phenomena in High-Energy Ion-Implanted Silicon

Authors: Haynes, T.E.;

Critical Vacancy-Driven Phenomena in High-Energy Ion-Implanted Silicon

Abstract

High-energy (MeV) ion implantation is now being rapidly introduced into integrated circuit manufacturing because it promises process simplification and improved device performance. However, high-energy implantation introduces an imbalance of excess vacancies and vacancy-cluster defects in the near-surface region of a silicon crystal. These defects interact with dopants affecting diffusion and electrical activation during subsequent processing. The objective of this project was to develop sufficient understanding of the physical mechanisms underlying the evolution of these defects and interactions with dopant atoms to enable accurate prediction and control of dopant diffusion and defect configurations during processing. This project supported the DOE mission in science and technology by extending ongoing Basic Energy Sciences programs in ion-solid physics and x-ray scattering at ORNL into new areas. It also strengthened the national capability for advanced processing of electronic materials, an enabling technology for DOE programs in energy conversion, use, and defense.

Country
United States
Keywords

Atoms, Silicon, 36 Materials Science, Physics, Performance, Ion Implantation, Processing, Integrated Circuits, Diffusion, Scattering, Manufacturing, Defects, Ornl, Vacancies, Forecasting, Energy Conversion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research