
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Predicting Solar PV Output based on Hybrid Deep Learning and Physical Models: Case Study of Morocco

Background: In recent years, the integration of renewable energy sources into the grid has increased exponentially. However, one significant challenge in integrating these renewable sources into the grid is intermittency. Objective: To address this challenge, accurate PV power forecasting techniques are crucial for operations and maintenance and day-to-day operations monitoring in solar plants. Methods: In the present work, a hybrid approach that combines Deep Learning (DL) and Numerical Weather Prediction (NWP) with electrical models for PV power forecasting is proposed Results: The outcomes of the study involve evaluating the performance of the proposed model in comparison to a Physical model and a DL model for predicting solar PV power one day ahead and two days ahead. The results indicate that the prediction accuracy of PV power decreases and the error rates increase when forecasting two days ahead, as compared to one day ahead. Conclusion: The obtained results demonstrate that DL models combined with NWP and electrical models can improve PV Power forecasting compared to a Physical model and a DL model.
- Université du Québec à Rimouski Canada
- Mohammadia School of engineering Morocco
- Mohammadia School of engineering Morocco
- Mohammed V University Morocco
- Polytechnique Montréal Canada
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
