Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real-Time Multiple Object Detection Using Raspberry Pi and Tiny-ML Approach

Authors: Tarun Jaiswal; Manju Pandey; Priyanka Tripathi;

Real-Time Multiple Object Detection Using Raspberry Pi and Tiny-ML Approach

Abstract

Introduction: Object detection has been an essential task in computer vision for decades, and modern developments in computer vision and deep learning have greatly increased the accuracy of detecting systems. However, the high computational requirements of deep learningbased object detection algorithms limit their applicability to resource-constrained systems, such as embedded devices. Methods: With the advent of Tiny Machine Learning (TinyML) devices, such as Raspberry Pi, it has become possible to deploy object detection systems on small, low-power devices. Due to their accessibility and cost, Tiny-ML devices, such as Raspberry Pi, a single-board tiny-ML device that is extremely well-liked, have recently attracted a lot of attention. Results: In this study, we present an enhanced SSD-based object detection approach and deploy the model using a tinyML device, i.e., Raspberry Pi. Conclusion: The proposed object detection model is lightweight and built utilizing Mobilenet- V2 as the underlying foundation.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average