Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving Energy Efficiency in Internet of Things using Artificial Bee Colony Algorithm

Authors: Muratov Eugene; Pontecorvi Alfredo; Chiloiro Sabrina; Barbalho Félix Mayara; Yang Yuanyuan; Ahmad Anas; Kouhsari Ebrahim; +58 Authors

Improving Energy Efficiency in Internet of Things using Artificial Bee Colony Algorithm

Abstract

Background: With the advent of IoT, the deployment of batteries with a limited lifetime in remote areas is a major concern. In certain conditions, the network lifetime gets restricted due to limited battery constraints. Subsequently, the collaborative approaches for key facilities to reduce the constraint demands of the current security protocols. Objective: This work covers and combines a wide range of concepts linked by IoT based on security and energy efficiency. Specifically, this study examines the WSN energy efficiency problem among IoT devices and security for the management of threats in IoT through collaborative approaches and finally outlines the future. The concept of energy-efficient key protocols which clearly cover heterogeneous IoT communications among peers with different resources has been developed. Because of the low capacity of sensor nodes, the energy efficiency in WSNs has been an important concern. Methods: In this paper, we present an algorithm for Artificial Bee Colony (ABC) which reviews security and energy consumption to discuss their constraints in the IoT scenarios. Results: The results of a detailed experimental assessment are analyzed in terms of communication cost, energy consumption and security, which prove the relevance of a proposed ABC approach and a key establishment. Conclusion: The validation of DTLS-ABC consists of designing an inter-node cooperation trust model for the creation of a trusted community of elements that are mutually supportive. Initial attempts to design the key methods for management are appropriate individual IoT devices. This gives the system designers, an option that considers the question of scalability.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%