Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-Driven Proactive Maintenance and Asset Management for Energy Distribution Networks

Authors: Mortensen, Lasse Kappel;

Data-Driven Proactive Maintenance and Asset Management for Energy Distribution Networks

Abstract

Power and district heating networks constitute critical infrastructures that play central roles in the renewable energy transition of our society. The maintenance practices for many energy distribution network assets have historically been reactive. As the networks age failure becomes more frequent. These failures lead to supply disruptions, decreased reliability and energy efficiency, and economic losses. The central aim of this doctoral thesis is therefore to develop, improve, and demonstrate proactive maintenance technologies for energy distribution networks, effectively increasing technology readiness levels. Energy distribution networks are governed by incomplete and limited failure data for assets whose observability is low. The majority of the contributions of the thesis therefore target these areas specifically. Through a collection of papers, this thesis suggests data representations, modeling approaches, and parameter estimation techniques that enable a shift in maintenance practices from reactive to proactive reliability-centered and predictive maintenance approaches. The common denominator through most of the proposed methods is the use of third-party data to describe assets’ environmental working conditions, feature engineering, and imbalanced learning techniques. Initial contributions focus on data-driven maintenance prioritization for cable replacement planning and planning thermographic inspections of district heating pipes, while later contributions reapply the central concepts for failure rate predictions and riskbased asset-maintenance planning. The use of existing data and metering infrastructure is a requirement for all tools proposed in this thesis. Therefore, the thesis investigates the feasibility of integrating smart meter data into long and short-term proactive maintenance practices.The tools developed throughout the Ph.D. project are applied to and validated on data from several Danish energy distribution systems, showing the practical feasibility of the proposed tools. These results indicate a significant value in transitioning to data-driven reliability-centered maintenance approaches. They also show that asset management procedures may be improved and the models used to attune investments in asset maintenance. Nevertheless, the results also highlight several barriers to the deployment of proactive maintenance approaches in energy distribution systems. Specifically, the relative youth of district heating pipes makes it hard to discern among distributional assumptions regarding the pipes’ time to failure distribution. While the results show that third-party proxy features and feature engineering improve failure predictions, these build on limited data and thus would benefit from validation on bigger and more comprehensive datasets. Additionally, incomplete tracking of time-varying features of the pipes and cables does not allow for detailed modeling of the time-varying effects of these features. Lastly, the use of smart meter data for long and short-term proactive maintenance is challenged by low data collection frequencies and relatively uncongested network conditions in power systems.

El- og fjernvarmenetværker udgør kritiske infrastrukturer, der spiller en central rolle i vores samfunds overgang til vedvarende energi. Vedligeholdelsespraksisser for mange energidistributionsnetværker har historisk set været reaktive. Når netværkene ældes, bliver fejl hyppigere. Disse fejl fører til forsyningsafbrydelser, reduceret pålidelighed og energieffektivitet samt økonomiske tab. Det centrale mål med denne ph.d.-afhandling er derfor at udvikle, forbedre og demonstrere proaktive vedligeholdelsesteknologier til energidistributionsnetværker og dermed øge teknologi-parathedsniveauet.Energidistributionsnetværker styres af ufuldstændige og begrænsede fejldata for aktiver med lav observerbarhed. Størstedelen af afhandlingens bidrag er derfor målrettet disse områder specifikt. Gennem en samling af artikler foreslår denne afhandling datarepræsentationer, modelleringsmetoder og parameterestimeringsteknikker, der muliggør et skift i vedligeholdelsespraksisser fra reaktive til proaktive, pålidelighedscentrerede og prædiktive vedligeholdelsesmetoder.Fællesnævneren gennem de fleste af de foreslåede metoder er brugen af tredjepartsdata til at beskrive aktivers miljømæssige arbejdsforhold, feature engineering og ubalancerede læringsteknikker. De indledende bidrag fokuserer på datadrevet vedligeholdelsesprioritering for kabeludskiftningsplanlægning og planlægning af termografiske inspektioner af fjernvarmerør, mens senere bidrag genanvender de centrale koncepter til fejlrateforudsigelser og risikobaseret vedligeholdelsesplanlægning. Brugen af eksisterende data og måleinfrastrukturer er et krav for alle de værktøjer, der foreslås i denne afhandling. Derfor undersøger afhandlingen muligheden for at integrere data fra smarte målere i både langsigtede og kortsigtede proaktive vedligeholdelsespraksisser. De værktøjer, der er udviklet gennem ph.d.-projektet, anvendes på og valideres med data fra flere danske energidistributionssystemer, hvilket viser den praktiske gennemførlighed af de foreslåede værktøjer. Disse resultater indikerer en betydelig værdi i overgangen til datadrevne, pålidelighedscentrerede vedligeholdelsesmetoder. De viser også, at asset management procedurer kan forbedres, og modellerne kan justere investeringsniveauet i aktivernes vedligeholdelse. Resultaterne fremhæver dog også en række barrierer for implementeringen af proaktive vedligeholdelsesmetoder i energidistributionssystemer. Specifikt gør fjernvarmerørenes relative ungdom det svært at skelne mellem distributionsantagelser vedrørende rørenes tid til fejl fordeling. Mens resultaterne viser, at tredjeparts proxy variable samt fremstillede variable forbedrer fejlforudsigelser, bygger disse på begrænsede data og ville derfor have gavn af validering på større og mere omfattende datasæt. Desuden tillader ufuldstændig sporing af tidsvarierende variable for rør og kabler ikke detaljeret modellering af disse variables tidsvarierende effekter. Endelig udfordres brugen af data fra smarte målere til langsigtet og kortsigtet proaktiv vedligeholdelse af lave datainsamlingsfrekvenser og relativt umættede netværksforhold i elsystemer.

Country
Denmark
Related Organizations
Keywords

power system, proaktiv vedligeholdelse, energy distribution, asset management, fjernvarme, reliability-centered maintenance, elsystem, pålidelighedscentreret vedligeholdelse, proactive maintenance, energidistribution, district heating

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research