
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis and Modeling of AC and DC Micro-Grids for Prosumer Based Implementation

In view of global targets to expurgate the carbon foot prints, presently major focus is on integrating prosumer renewable energy sources (RES). This has caught more interest in studying the impacts of AC and DC micro grid. Looking at the advantages of power transformers for stepping up and down the voltages, AC grids seem favorable for transmitting power over long distances, but AC grids are also often subjected to difficulties associated with them such as frequency dip, voltage drop due to line impedance, skin effect and Ferranti effect etc. Most of the sources and loads, particularly the renewables like solar, battery etc., in a micro grid are basically DC in nature and their operating voltages are low. Considering the conversion losses and transformer cost combined with problems of AC grid, DC micro grids are catching attention and their analysis is thus required. This paper presents the controls of various types of distributed generation sources (DGs) including renewable energy sources (RES) so as to integrate them to form a micro-grid. The AC and DC micro-grid models have been developed and its performance is assessed. Stability analysis is performed on both AC and DC micro-grid during permanent faults, temporary faults and sudden load variations to have a comparative outcome for selection of a better micro-grid.
TK1001-1841, Production of electric energy or power. Powerplants. Central stations, converter control, ac micro-grid, Electrical engineering. Electronics. Nuclear engineering, dc micro-grid, renewable energy sources, TK1-9971
TK1001-1841, Production of electric energy or power. Powerplants. Central stations, converter control, ac micro-grid, Electrical engineering. Electronics. Nuclear engineering, dc micro-grid, renewable energy sources, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
