Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecographyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecography
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.22541/au.16...
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.60692/5q...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/rh...
Other literature type . 2024
Data sources: Datacite
https://ucrisportal.univie.ac....
Article . 2024
License: cc_by_3_0
Data sources: u:cris
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Invasion risk of the currently cultivated alien flora in Southern Africa is predicted to decline under climate change

من المتوقع أن ينخفض خطر غزو النباتات الغريبة المزروعة حاليًا في الجنوب الأفريقي في ظل تغير المناخ
Authors: Ali Omer; Franz Essl; Stefan Dullinger; Bernd Lenzner; Adrián García‐Rodríguez; Dietmar Moser; Trevor S. Fristoe; +7 Authors

Invasion risk of the currently cultivated alien flora in Southern Africa is predicted to decline under climate change

Abstract

Alien species can have massive impacts on native biodiversity and ecosystem functioning. Assessing which species from currently cultivated alien floras may escape into the wild and naturalize is hence essential for ecosystem management and biodiversity conservation. Climate change has promoted the naturalization of many alien plants in temperate regions, but whether outcomes are similar in (sub)tropical areas is insufficiently known. In this study, we used species distribution models to evaluate the current naturalization risk of 1,527 cultivated alien plants in 10 countries of Southern Africa and how their invasion risk might change due to climate change. We assessed changes in climatic suitability across the different biomes of Southern Africa. Moreover, we assessed whether climatic suitability for cultivated alien plants varied with their naturalization status and native origin. The results of our study indicate that a significant proportion (53.9%) of the species are projected to lack suitable climatic conditions in Southern Africa, both currently and in the future. Based on the current climate conditions, 10.0% of Southern Africa is identified as an invasion hotspot (here defined as the top 10% of grid cells that provide suitable climatic conditions to the highest numbers of species). This percentage is expected to decrease slightly to 7.1% under moderate future climate change and shrink considerably to 2.0% under the worst-case scenario. This decline in climatic suitability is observed across most native origins, particularly under the worst-case climate change scenario. Our findings indicate that climate change is likely to have an opposing effect on the naturalization of currently cultivated average plants in (sub)tropical Southern Africa compared to colder regions. Specifically, the risk of these plants’ naturalizing is expected to decrease due to the region’s increasingly hot and dry climate, which will be challenging for the persistence of both native and alien plant species.

Countries
Austria, Germany
Keywords

biological invasion, Agricultural and Biological Sciences, Biodiversity Conservation and Ecosystem Management, Sociology, Biome, SDG 13 - Climate Action, Climate change, Naturalization, Species Distribution Modeling and Climate Change Impacts, Ecology, Geography, 106003 Biodiversity research, Ecological Modeling, Life Sciences, Biodiversity, FOS: Sociology, 106003 Biodiversitätsforschung, climate change, Disturbance (geology), SDG 13 – Maßnahmen zum Klimaschutz, Physical Sciences, Impact of Pollinator Decline on Ecosystems and Agriculture, Southern Hemisphere, Habitat Fragmentation, habitat suitability, Census, Population, invasion risk, naturalization success, Alien, Introduced species, Genetics, ornamental plants, Agroforestry, species distribution models, Biology, Ecology, Evolution, Behavior and Systematics, Ecosystem, Nature and Landscape Conservation, Demography, Habitat Suitability, Invasive species, Bacteria, Paleontology, Temperate climate, Subtropics, FOS: Biological sciences, Environmental Science, Flora (microbiology)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research