Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Thermal Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Thermal Science
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enclosed thermal management method for high-power photovoltaic inverters based on heat pipe heat sink

Authors: Ziying Zhang; Yupeng Xian; Lu Yang; Xiangfen Bian; Yannan Li; Hanzhong Tao;

Enclosed thermal management method for high-power photovoltaic inverters based on heat pipe heat sink

Abstract

Photovoltaic inverter plays a crucial role in photovoltaic power generation. For high-power photovoltaic inverter, its heat loss accounts for about 2% of the total power. If the large amount of heat generated during the operation of the inverter is not dissipated in time, excessive temperature rise will reduce the safety of the devices. This paper proposes a closed photovoltaic inverter structure based on heat pipe and liquid cooling which overcomes the noise, dust and other problems caused by traditional air-cooling heat dissipation method and reduces cost of the volume occupied inside the body. Heat is dissipated through heat pipes, which are efficient heat transfer units. A simulation model of the actual cabinet was estab-lished using CFD, and the maximum junction temperature in the inverter was in-vestigated under different coolant temperatures, flow rates, cooling liquid, and heat loads. The results showed that the liquid cooling heat dissipation structure can effectively dissipate the heat inside the cabinet. The impact of two different types of heat sink used for power modules on temperature uniformity was studied. The results indicated that the 9-heat pipe type heat sink has better heat dissipation and uniform hot spots performance, the maximum heat source temperatures in the chip and capacitor were reduced by 9.91?C and 7.49?C, respectively. Finally, the performance of the two types of radiators under different heat loads was studied.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold