Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Apollo
Article . 2022
Data sources: Apollo
Tire Science and Technology
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Empirical Tire-Wear Model for Heavy-Goods Vehicles

Authors: Lepine, Julien; Na, Xiaoxiang; Cebon, David;

An Empirical Tire-Wear Model for Heavy-Goods Vehicles

Abstract

ABSTRACT Tire selection has an important impact on the operational costs of heavy-goods vehicles (HGVs). HGV tires are designed on a tradeoff between wear resistance, rolling resistance, and adhesion (skid resistance). High wear resistance tires (high mileage) are replaced less often but use more fuel during operation, and vice versa for low rolling resistance tires. Presently, finding the optimal tire to minimize replacement costs and fuel consumption (greenhouse gas emissions) is challenging due to the difficulty in predicting tire wear for a given operation, since its rate varies with different vehicle configurations (e.g., load, vehicle length, number of axles, type of axle, etc.) and road types (e.g., motorways/highways, minor roads, urban roads, etc.). This article presents a novel empirical tire-wear model that can be used to predict the wear for multi-axle vehicles based on route data and a vehicle model. The first part of the article presents the analytical and experimental development of the model. The second part presents the experimental validation of the model based on 10 months of in-service data totaling 37,000 km of operation. The model predicts tire tread depth within 8% (average error of 2%).

Country
United Kingdom
Related Organizations
Keywords

life-cycle analysis, tire wear, vehicle wheels/tire, environmental impact, vehicles, goods vehicles/trucks, low emission transport

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%