Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Water and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Water and Land Development
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Water and Land Development
Other ORP type . 2022
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Screening of sweet and grain sorghum genotypes for green biomass production in different regions of Kazakhstan

Authors: Rauan Zhapayev; Kristina Toderich; Gulya Kunypiyaeva; Meruyert Kurmanbayeva; Mustafa Mustafayev; Zhumagali Ospanbayev; Aiman Omarova; +1 Authors

Screening of sweet and grain sorghum genotypes for green biomass production in different regions of Kazakhstan

Abstract

As the impact of global climate change increases, the interaction of biotic and abiotic stresses increasingly threatens current agricultural practices. The most effective solution to the problem of climate change and a decrease in the amount of atmospheric precipitation is planting extremely drought-resistant and high-yielding crops. Sorghum can grow in harsh conditions such as salinity, drought and limited nutrients, also it is an important part of the diet in many countries. Sorghum can be introduced in many zones of Kazakhstan. Plant height and yield of green plant biomass of 16 sorghum samples in arid conditions were determined based on a set of agrobiological characteristics for field screening. The height of the studied samples of grain sorghum was 0.47 ±0.03 m, and the height of sweet sorghum was much longer, reaching up to 2.88 ±0.12 m. Also, there was a strong difference in green biomass in cultivated areas under different soil and climatic conditions, the green biomass of sweet sorghum was 3.0 Mg∙ha –1, and in grain sorghum, it reached up to 57.4 Mg∙ha –1. Based on the data of the field assessment for various soil and climatic conditions, the following samples were identified for introduction into production: samples of sweet sorghum for irrigated and rainfed lands of the Almaty Region and in the conditions of non-irrigation agriculture of the Aktobe Region – a promising line ICSV 93046. For non-irrigation agriculture of the Akmola Region, genotypes of sweet and grain sorghum are ‘Chaika’, ‘Kinelskoe 4’ and ‘Volzhskoe 44’.

Keywords

variety, River, lake, and water-supply engineering (General), TC401-506, biomass, sorghum bicolor, collection, drought-tolerance, TC801-978, Irrigation engineering. Reclamation of wasteland. Drainage, plant height

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research