Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Folia Oecologicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Folia Oecologica
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Folia Oecologica
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of climate change on potential distribution of Dactylorhiza hatagirea (D. Don) Soó in the twenty-first century across the north-western Himalayas

Authors: Dad Javaid M.; Rashid Irfan;

Effect of climate change on potential distribution of Dactylorhiza hatagirea (D. Don) Soó in the twenty-first century across the north-western Himalayas

Abstract

Abstract The populations of Dactylorhiza hatagirea are shrinking fast across the north-western Himalayas. Although the effects of contemporary anthropic factors on its distribution are well documented, the impacts of anticipated climate change have not been evaluated. In the present study, the maximum entropy modelling (MaxEnt) was used to quantify the impact of climate change on the distribution of D. hatagirea over the next 50 years under representative concentration pathways (RCP) 4.5 and 8.5, using ensemble mean of four general circulation models, viz. CCSM4, CNRM, MRI, and GFDL. The results exhibited a fairly good model performance, with D. hatagirea attaining the highest suitability when ‘annual mean temperature’ and ‘annual precipitation’ peaks at ca. 11.5 °C and 1,250 mm, respectively. The variables with greater influence (%) were annual precipitation (40.7), mean temperature of the wettest quarter (22.9), precipitation seasonality (16.6), and mean annual temperature (10.4). Under the current climate, about 790 km2 that spread across Kashmir (274.1 km2) Jammu (210.5 km2), and Ladakh (305.6 km2) were identified as high potential habitat (HPH) areas. The predicted distribution showed that for RCP 4.5 the HPH areas would decrease by 4.2 and 5.4%, by 2050 and 2070, while for RC P8.5 the decrease would be 18.1 and 8.7%, respectively. The shrinkage may be more obvious across tropical and temperate regions, while the species may gain new HPH areas across cold arid areas. Although HPH shrinkage for D. hatagirea appears mild, but as it exhibits high habitat specificity and grows inherently slow, this insignificant shrinkage may enhance its risk of local extinction. Therefore, an integrated approach involving in-situ measures across regions, where the species may disappear, and ex-situ measures, where it may expand, is hugely important.

Related Organizations
Keywords

climate change, Ecology, endangered plants, maxent, himalaya, QH540-549.5, biodiversity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research