Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Università degli Stu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat transfer mechanisms in vertical green systems and energy balance equations

Authors: Convertino, F.; Vox, G.; Schettini, E.;

Heat transfer mechanisms in vertical green systems and energy balance equations

Abstract

The use of vegetated vertical systems is a sustainable technology for improving the energy efficiency of buildings in cities in order to reduce the energy consumption for air conditioning in summer and to increase the thermal insulation in winter. increasing urban green infrastructure (ugi) in a city can contribute to improve urban climate in summer reducing buildings surface temperature and urban air especially in southern europe. the application of vertical green systems requires the knowledge of the energy performance of the applied greenery system. the choice of the green facades depends on the local climate, water availability, building shape. the presence of green facades affects the building microclimate all day, by reducing heat waves during the warm periods and heat losses from the building in the cold period. the heat and mass transfer between the external environment, the green facades and the building surface determine the building microclimate. solar radiation, long wave infrared radiation, convective heat transfer and evapotranspiration are the main mechanisms of heat transfer in a green façade. the paper describes the main parameters concerning heat flow in green facades that can be used in simulation models for predicting temperatures in buildings using the external weather conditions as model inputs. the input parameters are: external air temperature and relative humidity, solar radiation, wind velocity and direction, plants and building characteristics. the green facade was described by a schematic representation, four layers were defined: the green layer, the external surface of the building wall, the internal surface of the building wall, the air inside the building. the energy balance was defined for each layer and all the terms involved in the energy exchange between the layers were defined as a function of the plant, the weather conditions and the constructive characteristics of the wall.

Country
Italy
Related Organizations
Keywords

690, Evapotranspiration, Green facade, Solar radiation, Convection, Modelling, Green wall, Urban agriculture

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
bronze