Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www.witpress....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.witpress.com/Secure...
Conference object
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.2495/ut1301...
Conference object . 2013 . Peer-reviewed
Data sources: Crossref
ZENODO
Conference object . 2013
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimating the benefits of energy-efficient train driving strategies: a model calibration with real data

Authors: DE MARTINIS, VALERIO; Gallo, M.; D'ACIERNO, LUCA;

Estimating the benefits of energy-efficient train driving strategies: a model calibration with real data

Abstract

This paper describes the first results of a research project where the main focus is to implement a Decision Support System (DSS) to optimise energy consumption of rail systems. In order to achieve this objective, the authors implement an optimisation module for the design of energy-efficient driving strategies, in terms of speed profiles, that requires a railway simulation model as a subroutine. Here the authors focus on the general framework of the optimisation module and on the calibration of the railway simulation model. All elaborations are implemented in a MatLab environment, aiming at defining possible energy-efficient speed profiles, in accordance with energy-saving strategies, through optimised speed profile parameters, in terms of acceleration, target speed, deceleration, coasting phase, and driving behaviour, represented by the jerk. The model is calibrated on real data recorded on a double track section of a railway line in the city of Naples (Italy). Initial results show that consumption is very variable with the speed profile and with driver behaviour, but the model is able to reproduce the average consumption of each driving strategy and should be able, within the DSS, to suggest the best driving strategies for each rail section.

Country
Italy
Keywords

Railway systems, Energy-efficient driving, Optimisation models, Energy-efficient driving; Railway systems; Optimisation models

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
bronze