Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Prediction of a Ducted Rocket Combustor Using a Simulated Solid Fuel

Authors: Stowe, R.A.; Dubois, C.; Harris, P.G.; Mayer, A.E.H.J.; Dechamplain, A.; Ringuette, S.;

Performance Prediction of a Ducted Rocket Combustor Using a Simulated Solid Fuel

Abstract

The ducted rocket is a supersonic flight propulsion system that takes the exhaust from a solid fuel gas generator, mixes it with air, and burns it to produce thrust. To develop such systems, the use of numerical models based on computational fluid dynamics (CFD) has been increasing, but to date only simplified treatments of the combustion within ducted rockets have been reported, likely due to the difficulties in characterizing and accurately modeling the partially reacted, particle-laden fuel exhaust from the gas generator. Through a careful examination of the governing equations and experimental measurements, a CFD-based methodology that properly accounts for the influence of the gas generator exhaust, particularly the solid phase, has now been developed to predict the performance of a ducted rocket combustor using a simulated solid fuel. It uses an equilibrium-chemistry probability density function combustion model with two separate streams, one gaseous and the other of 75-nm-diam carbon spheres, to represent the exhaust products from the gas generator. After extensive validation with direct-connect combustion experiments over a wide range of geometries and test conditions, this CFD-based method was able to predict, within a good degree of accuracy, the combustion efficiency of a ducted rocket combustor.

Country
Netherlands
Related Organizations
Keywords

Flight dynamics, Nozzles, Supersonic speed, Gas generators, Rate constants, Molecular mass, Combustion, Computational fluid dynamics, Computer simulation, Diffusion, Solid fuels, Supersonic aerodynamics, Probability density function, Rockets, Activation energy, Rocket combustor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research