Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIAA Journal
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid Model for Inflow Conditions Inference on Airfoils Under Uncertainty

Authors: Yuriy Marykovskiy; Julien Deparday; Imad Abdallah; Gregory Duthé; Sarah Barber; Eleni Chatzi;

Hybrid Model for Inflow Conditions Inference on Airfoils Under Uncertainty

Abstract

Estimation of inflow conditions, such as wind speed and angle of attack, is vital for assessing aerodynamic performance of a lifting profile. This task is particularly challenging in the field due to the inherent stochasticity of the inflow variables. In practice, the field installation of a measurement system exacerbates the measurement uncertainty. Here, we present a hybrid model to infer the inflow conditions on a wind turbine blade along with a process to quantify the involved uncertainty. The model combines potential flow theory and conformal mapping with pressure measurements from a novel monitoring system, which eliminates the need for external reference pressure measurements. Stagnation point location and wind speed are formulated as outputs of an optimization problem, in which pressure differences along the surface of an airfoil are connected to the potential flow solution through the Bernoulli equation. The proposed scheme is experimentally validated. The hybrid model offers a practical and robust solution for inflow condition estimation, suitable for field deployment on wind turbine or aircraft. The uncertainty quantification process provides valuable insights for improving monitoring system design and quantifying the accuracy of the predictive scheme before actual field installation.

Country
Switzerland
Related Organizations
Keywords

Stagnation Point; NACA 0018; Wind Turbine; Aerodynamic Properties; Aeroplane; Aerodynamic Potential Flow; Uncertainty Quantification; In Situ Measurements

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average