Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science and Technolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science and Technology for Energy Transition
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptive energy management strategy for sustainable xEV charging stations in hybrid microgrid architecture

Authors: Saleha Tabassum; Attuluri R. Vijay Babu; Dharmendra Kumar Dheer;

Adaptive energy management strategy for sustainable xEV charging stations in hybrid microgrid architecture

Abstract

Integrating Electric Vehicles (EVs) into power grid presents critical energy management challenges, especially in microgrid systems powered by renewable energy sources. This study introduces a novel energy management strategy for EV charging stations utilizing an Adaptive Neuro-Fuzzy Inference System (ANFIS) controller. This system dynamically optimizes the coordination of renewable energy sources solar PhotoVoltaic (PV) panels and wind turbines energy storage, and EV chargers. By leveraging real-time data and predictive algorithms, the ANFIS controller adapts to fluctuations in energy supply and demand, ensuring optimal performance. The innovation of this work lies in combining fuzzy logic with neural network-based learning to enhance decision-making under uncertain and variable renewable energy conditions. The proposed approach employs a robust design methodology, integrating neural network training with fuzzy logic system development, to create an adaptive and intelligent control system. Simulation results using MATLAB/Simulink demonstrate a 92% increase in energy efficiency and an 89% enhancement in load-handling capacity compared to conventional methods. The system effectively manages renewable energy variability, battery state-of-charge, and load demand, maintaining stable electrical characteristics even under dynamic wind and solar conditions. This work underscores the importance of advanced AI-driven control strategies in enabling sustainable EV charging infrastructure within microgrid environments.

Keywords

microgrid, Technology, anfis controller, energy management, T, Science, Q, renewable energy, electric vehicles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research