
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
DEVELOPMENT OF THE METHOD OF PREDICTION OF THE OUTPUT OF CHEMICAL PRODUCTS OF COAL WITH THE USE OF NEURO NETWORK MODELING

На основе математического анализа экспериментальных данных показателей качества углей и угольных концентратов и выхода химических продуктов коксования методами корреляционного, регрессионного, канонического и кластерного анализов разработаны нейросетевые математические модели для прогноза исследуемых параметров. Полученные результаты в дальнейшем планируется использовать при составлении оптимальных шихт для коксования в реальных производственных условиях.
On the basis of mathematical analysis of experimental data of coal and coal concentrates quality indicators and coking chemical products yield by the methods of correlation, regression, canonical and cluster analysis, neural network mathematical models for the forecast of the studied parameters have been developed. The obtained results are planned to be used in the future in the preparation of optimal charge for coking in real production conditions.
№4(24) (2019)
- Kuzbass State Technical University Russian Federation
- Kuzbass State Technical University Russian Federation
coal, математическая модель, уголь, нейронные сети, coking chemical products, neural networks, химические продукты коксования, mathematical model
coal, математическая модель, уголь, нейронные сети, coking chemical products, neural networks, химические продукты коксования, mathematical model
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
