
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Environmentally friendly and roll-processed flexible organic solar cells based on PM6:Y6.

Organic Solar Cells (OSCs) have reached the highest efficiencies using lab-scale on active areas far below 0.1 cm^2. This tends to widen the so-called “lab-to-fab gap”, which is one of the most important challenges to make OSCs competitive. The most commonly used fabrication technique is spin-coating, which has poor compatibility with large-scale techniques and substantial material waste. Moreover, other techniques such as blade or slot-die coating are much more suitable for roll-to-roll manufacturing processes, which is one of the advantages the technology has compared, for example, to silicon solar cells. However, only a few studies report solar cells using these fabrication techniques. Additionally, for the environmentally friendly OSC scale-up, inks based on non-hazardous solvent systems are needed. In this work, slot-die coating has been chosen to coat the PM6:Y6 active layer, using o-xylene, a green solvent, without additives. The optimal coating parameters are defined through fine-tuning of the coating parameters, such as the drying temperature and solution concentration. Moreover, ternary devices with PCBM, and fully printed devices are also fabricated. Power conversion efficiencies of 6.26% and 7.16% are achieved for binary PM6:Y6 and ternary PM6:Y6:PCBM devices, respectively.
Chemical technology, TP1-1185, large area, hydrocarbon-based solvent, PM6, additive-free, flexible, roll-processed
Chemical technology, TP1-1185, large area, hydrocarbon-based solvent, PM6, additive-free, flexible, roll-processed
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
