
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey

doi: 10.26650/jepr963438
Today, data accumulated during internet use have become an important source of information for people’s behaviour, issues, and needs, and due to real-time data acquisition, Google search data have become a focal point for researchers. As a result, it has been become more common to use GT data, which have been included in forecasting models for many economic indicators, including unemployment rate forecasting. Therefore, this study aims to determine whether including Google search data in forecasting models can improve the model’s performance in forecasting the unemployment rate in Turkey. In this context, out-ofsample forecasting was performed in this study using seasonally adjusted monthly unemployment rates for the period between January 2005 and August 2020 and monthly GT data about the topic of unemployment insurance. In addition, the forecasting performance of ARIMA and ARIMAX methods were compared.
- Istanbul University Turkey
google trends, unemployment rate, time-series model, forecasting, HB1-3840, HG1-9999, Economic theory. Demography, arima, Finance
google trends, unemployment rate, time-series model, forecasting, HB1-3840, HG1-9999, Economic theory. Demography, arima, Finance
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
