
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Pre- and Post-Treatment Assessment for the Anaerobic Digestion of Lignocellulosic Waste: P-graph

doi: 10.3303/cet1863001
Lignocellulosic waste is one of the most abundant and potential feedstocks for anaerobic digestion (AD), but the energy efficiency is limited by the lignocellulosic composition which is recalcitrant to biodegradation. Pre- treatment of feedstock and the post-treatment of biogas and digestate play a significant role in enhancing the AD efficiency as well as the product utilisation. This study aims to determine the cost-optimal pre-and post- treatment pathway for an AD of lignocellulosic waste by applying P-graph. The economic balance between the main operating cost, yield and quality of products were considered. The treatment options were overviewed followed by a case study considered a different combination of physical, chemical and biological pre- treatments, biogas post-treatment (combine heat and power, fuel cell, biomethane, biofuel) and digestate treatments. A total of 9 pre-treatments for lignocellulosic waste, 2 digestate post-treatments and 9 post- treatments for biogas were evaluated in this study. Chemical pre-treatment by CaO, post-treatment by H2S removal with membrane separation for biomethane production and without the composting of digestate is suggested as the optimal treatment pathway for lignocellulosic waste.
- Universiti Teknologi MARA Malaysia
- Universiti Teknologi MARA Malaysia
TK7885-7895, Computer engineering. Computer hardware, Chemical engineering, 660, TP155-156, TP Chemical technology
TK7885-7895, Computer engineering. Computer hardware, Chemical engineering, 660, TP155-156, TP Chemical technology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
