Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Marine Ecology Progr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2011
Data sources: HAL INRAE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Marine Ecology Progress Series
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling the effects of fishing on the biomass of the world’s oceans from 1950 to 2006

Authors: Tremblay-Boyer, Laura; Gascuel, Didier; Watson, Reg; Christensen, Villy; Pauly, Daniel;

Modelling the effects of fishing on the biomass of the world’s oceans from 1950 to 2006

Abstract

Marine fisheries have endured for centuries but the last 50 yr have seen a drastic increase in their reach and intensity. We generated global estimates of biomass for marine ecosystems and evaluated the effects that fisheries have had on ocean biomass since the 1950s. A simple and versatile ecosystem model was used to represent ecosystems as a function of energy fluxes through trophic levels (TLs). Using primary production, sea surface temperature, transfer efficiency, fisheries catch and TL of species, the model was applied on a half-degree spatial grid covering all oceans. Estimates of biomass by TLs were derived for marine ecosystems in an unexploited state, as well as for all decades since the 1950s. Trends in the decline of marine biomass from the unexploited state were analyzed with a special emphasis on predator species as they are highly vulnerable to overexploitation. This study highlights 3 main trends in the global effects of fishing: (1) predators are more affected than organisms at lower TLs

Keywords

570, Marine predators, Energy flow, [SDV.SA.STP]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of fishery, Fisheries, Ecosystem modelling, [SDV.SA.STP] Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of fishery, Trophic level

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Green
bronze