
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhanced Methanization of Long-Chain Fatty Acid Wastewater at 20°C in the Novel Dynamic Sludge Chamber–Fixed Film Bioreactor

Lipid-containing wastewaters, such as those arising from dairy processing, are frequently discharged at temperatures ≤ 20°C. Their valorization at low ambient temperatures offers opportunities to expand the application of high-rate anaerobic wastewater treatment toward achieving energy neutrality by minimizing the energy demand for heating. Lipid hydrolysis generates long-chain fatty acids (LCFAs), which incur operational challenges and hinder stable bioreactor operation by inducing sludge flotation and washout, coupled with the added challenge of treatment at lower temperature (20°C). These challenges are tackled together uniquely during the treatment of LCFA-rich synthetic dairy wastewater (SDW) (33% COD-LCFA) through de novo formed microbial granular sludge within the dynamic sludge chamber–fixed film (DSC-FF) reactor. The novel reactor design facilitated sludge retention for the entire operational period of 150 days by containing settled, flotating, and LCFA-encapsulated granular sludge and biofilm within a single module. High COD removal efficiencies (87–98%) were achieved in the three replicated DSC-FF reactors, along with complete LCFA removal at 18–72 h HRT (LCFA loading rate of 220–890 mgCOD-LCFA/L⋅day) and partial LCFA removal at 12 h HRT (LCFA loading rate of 1333 mgCOD-LCFA/L⋅day). The high removal efficiencies of unsaturated and saturated LCFAs achieved are reported for the first time during continuous anaerobic wastewater treatment at low temperatures (20°C). Moreover, de novo granulation was achieved within 8 days from a combination of inoculum mixtures at a high LCFA concentration (33% COD-LCFA) in SDW. The results demonstrate the feasibility of the DSC-FF reactor for treating LCFA-rich wastewaters at discharge temperatures and offer potential for expanded and more energetically productive anaerobic valorization of lipid-rich wastewater.
- Universiti Malaysia Terengganu Malaysia
- Tampere University Finland
- University of Zurich Switzerland
- TAMPEREEN KORKEAKOULUSAATIO SR Finland
- Tampere University Finland
dairy wastewater, 218 Environmental engineering, anaerobic sludge granulation, long-chain fatty acid mixture, General Works, dynamic sludge chamber fixed film reactor, A, biofilm formation
dairy wastewater, 218 Environmental engineering, anaerobic sludge granulation, long-chain fatty acid mixture, General Works, dynamic sludge chamber fixed film reactor, A, biofilm formation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
