Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How Operational Parameters Affect Electromethanogenesis in a Bioelectrochemical Power-to-Gas Prototype

Authors: Adrián Marí-Espinosa; Salvador Lladó; Julia Gallego; Pau Bosch-Jimenez; Monica Della Pirriera; Edxon Licon; Rubén Rodríguez-Alegre; +2 Authors

How Operational Parameters Affect Electromethanogenesis in a Bioelectrochemical Power-to-Gas Prototype

Abstract

Bioelectrochemical power-to-gas represents a novel solution for electrical energy storage, currently under development. It allows storing renewable energy surplus in the form of methane (CH4), while treating wastewater, therefore bridging the electricity and natural gas (and wastewater) grids. The technology can be coupled with membrane contactors for carbon dioxide (CO2) capture, dissolving the CO2 in wastewater before feeding it to the bioelectrochemical system. This way, the integrated system can achieve simultaneous carbon capture and energy storage objectives, in the scenario of a wastewater treatment plant application. In this study, such technology was developed in a medium-scale prototype (32 L volume), which was operated for 400 days in different conditions of temperature, voltage and CO2 capture rate. The prototype achieved the highest CH4 production rate (147 ± 33 L m–3 d–1) at the lowest specific energy consumption (1.0 ± 0.3 kWh m–3 CH4) when operated at 25°C and applying a voltage of 0.7 V, while capturing and converting 22 L m–3 d–1 of CO2. The produced biogas was nearer to biomethane quality (CH4 > 90% v/v) when CO2 was not injected in the wastewater. Traces of hydrogen (H2) in the biogas, detectable during the periods of closed electrical circuit operation, indicated that hydrogenotrophic methanogenesis was taking place at the cathode. On the other hand, a relevant CH4 production during the periods of open electrical circuit operation confirmed the presence of acetoclastic methanogenic microorganisms in the microbial community, which was dominated by the archaeal genus Methanothrix (Euryarchaeota). Different operational taxonomic units belonging to the bacterial Synergistes phylum were found at the anode and the cathode, having a potential role in organic matter degradation and H2 production, respectively. In the panorama of methanation technologies currently available for power-to-gas, the performances of this bioelectrochemical prototype are not yet competitive, especially in terms of volumetric CH4 production rate and power density demand. However, the possibility to obtain a high-quality biogas (almost reaching biomethane quality standards) at a minimal energy consumption represents a potentially favorable business scenario for this technology.

Keywords

electromethanogenesis, energy storage, carbon capture, renewable energy, General Works, A, methanation, microbial community

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold