Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/vy...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/2b...
Other literature type . 2022
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of dust pollutants and the impact of suspended particulate matter on the performance of photovoltaic systems

التحقيق في ملوثات الغبار وتأثير الجسيمات العالقة على أداء الأنظمة الكهروضوئية
Authors: Muhammad Tamoor; Muhammad Imtiaz Hussain; Abdul Rauf Bhatti; Sajjad Miran; Waseem Arif; Tayybah Kiren; Gwi Hyun Lee;

Investigation of dust pollutants and the impact of suspended particulate matter on the performance of photovoltaic systems

Abstract

The purpose of this study is to investigate the potential of airborne particulate matter (PM10 and PM2.5) and its impact on the performance of the photovoltaic (PV) system installed in the Sargodha region, being affected by the crushing activities in the hills. More than 100 stone crushers are operating in this region. Four stations within this region are selected for taking samples during the summer and winter seasons. Glass–fiber papers are used as a collection medium for particulate matter (PM) in a high-volume sampler. The concentration of PM is found above the permissible limit at all selected sites. The chemical composition, concentration, and the formation of particulate matter (PM10 and PM2.5) layers on the surface of the photovoltaic module varies significantly depending on the site’s location and time. The accumulation of PM layers on the PV module surface is one of the operating environmental factors that cause significant reduction in PV system performance. Consequently, it leads to power loss, reduction of service life, and increase in module temperature. For the PV system’s performance analysis, two PV systems are installed at the site, having higher PM concentration. One system is cleaned regularly, while the other remains dusty. The data of both PV systems are measured and compared for 4 months (2 months for the summer season and 2 months for the winter season). It is found that when the level of suspended particulate matter (PM10 and PM2.5) increases, the energy generation of the dusty PV system (compared to the cleaned one) is reduced by 7.48% in May, 7.342% in June, 10.68% in December, and 8.03% in January. Based on the obtained results, it is recommended that the negative impact of PM on the performance of the PV system should be considered carefully during the decision-making process of setting solar energy generation targets in the regions with a high level of particulate matter.

Keywords

Atmospheric sciences, Environmental Engineering, photovoltaic system (PV system), Environmental engineering, Organic chemistry, Pollutant, PM10–2.5, General Works, Environmental science, Engineering, Artificial Intelligence, A, Indoor Air Pollution in Developing Countries, Machine Learning Methods for Solar Radiation Forecasting, Photovoltaic system, particulate matter, FOS: Environmental engineering, Geology, FOS: Earth and related environmental sciences, solar irradiation, Pollution, Particulates, Chemistry, Photovoltaic Systems, Electrical engineering, Environmental Science, Physical Sciences, Computer Science, Environmental chemistry, ambient air quality, Environmental Impacts of Solar Energy Technologies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
gold