Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust finite-time integral terminal sliding mode control design for maximum power extraction of PMSG-based standalone wind energy system

Authors: Lyu-Guang Hua; Ammar Ali; Safeer Ullah; Ghulam Hafeez; Monji Mohamed Zaidi; Liu Jun Jun;

Robust finite-time integral terminal sliding mode control design for maximum power extraction of PMSG-based standalone wind energy system

Abstract

This paper introduces a novel control strategy called Finite-time Integral Terminal Sliding Mode Control (FITSMC), explicitly designed for a permanent-magnet synchronous generator (PMSG)-based standalone Wind Energy Conversion System (WECS). The primary objective of the FITSMC strategy is to regulate the operation of the wind turbine efficiently and maximize power extraction from the WECS. To achieve this, the system is driven onto a sliding surface within a predefined terminal time, ensuring rapid convergence and overall stability. An important advantage of the FITSMC strategy is its ability to maintain a standalone wind power system close to the maximum power point, even under varying wind conditions and load changes. In addition, the controller demonstrates robustness against uncertainties and disturbances, making it highly suitable for real-world applications. Extensive simulations and analyses have been conducted to validate the effectiveness of the proposed FITSMC. The results show a superior control performance compared to traditional methods. Consequently, the FITSMC strategy represents a promising advancement in control techniques for standalone wind power systems, providing an efficient and reliable approach for harnessing power from wind energy.

Keywords

maximum power point tracking (M.P.P.T), finite-time integral terminal SMC, wind turbine (WT), General Works, permanent magnet synchronous generator (PMSG), A, wind energy system (WES)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold