
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Environmental Flow Assessments Are Not Realizing Their Potential as an Aid to Basin Planning

handle: 10566/4208
Multiple planned dams in developing countries, mostly for hydropower, are threatening some of the world's great river systems. Concern over their social and environmental impacts has led to hydropower being excluded from the sustainability term ‘green energy.' Better planning, design and operation of hydropower dams could guide where to build and not to build, and how to mitigate some of their negative impacts. Impact assessments presently done for dams include Cumulative Impact Assessments (CIAs) or similar at the basin level, and Environmental Impact Assessments at the project level. These typically do not detail how the river ecosystem could change and the implications for its dependent social structures. A comprehensive Environmental Flows (EFlows) Assessment does provide this information but is almost always not linked to the other impact assessments. When done at all, it is often rudimentary; rarely basin-wide; and almost always done after major development decisions have already been made. A more effective approach for any basin targeted for hydropower or other large dam development would be to formally and automatically embed the requirement for a basin-wide, detailed EFlows Assessment into a CIA. This should be done at the earliest stage of planning, before dam sites are selected and allocated to developers. The EFlows method adopted matters, as it dictates the scope and flexibility of a study. Rapid one-size-fits-all methods do not provide the detail that governments and other stakeholders need to understand the possible future of their river basins, negotiate and make informed decisions.
- University of the Western Cape South Africa
River degradation, Basin-wide, 710, EFlows, river degradation, Cumulative Impact Assessments, hydropower, Environmental sciences, basin-wide, GE1-350, Hydropower
River degradation, Basin-wide, 710, EFlows, river degradation, Cumulative Impact Assessments, hydropower, Environmental sciences, basin-wide, GE1-350, Hydropower
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
