Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Environ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Environmental Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic Nexus between macroeconomic factors and CO2 emissions: Evidence from oil-producing countries

Authors: Md. Abu Issa Gazi; Md. Nahiduzzaman; Jakhongir Shaturaev; Bablu Kumar Dhar; Md. Abdul Halim;

Dynamic Nexus between macroeconomic factors and CO2 emissions: Evidence from oil-producing countries

Abstract

Current literature conveys that in spite of multiple studies being conducted to explore the influences of various macroeconomic factors both geographical and non-geographical on the CO2 emissions in different parts of the world, there is a scarcity of the same analyses from oil-producing countries. In this study, we reveal a new dimension by investigating the dynamic linkage of climate change, economic growth, energy use, and agricultural and rural development to the CO2 emissions of oil-producing countries around the world. In doing so, we apply Pedroni and Kao panel cointegration test, vector error correction model (VECM), pairwise Granger causality test, impulse response function (IRF), and some supportive models such as-generalized method of moments (GMM), and fixed-effect models. Our primary VAR-based models’ evidence that energy use (EUE), foreign direct investment (FDI), and trade to GDP (TPR) rate have both short-run and long-run casual consequences in CO2 emissions, while only long-run Granger causality is running from agricultural land ratio (ALR), forest area ratio (FAR), gross domestic product (GDP), population growth rate (PGR), renewable energy consumption (REC), and rural population rate (RPR) to CO2 emissions. However, bidirectional associations are observed between CO2 to foreign direct investment and trade percentage rate; EUE to renewable energy consumption and TPR; and TPR to FDI and gross domestic product. To demonstrate the significant impact, our secondary analysis tools GMM and fixed-effect regressions’ results disclose that high energy use and more domestic products significantly contaminate the environmental condition by increasing CO2 emissions in the atmosphere. Hence, our research provides great implications for the authorities of government, producers, businessmen, and general public in the oil-producing countries to ensure a sustainable environment by reducing energy use or alternating with renewable energies and emphasizing environmentally friendly products production over the long-run rather than conventional products production in the short-run.

Keywords

oil-producing countries, CO2 emissions, economic growth, energy use, Environmental sciences, climate change, GE1-350, Pedroni cointegration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold