Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Environ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Environmental Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Can green technology innovation alleviate the regional energy dilemma? Evidence from 30 provinces in China

Authors: Yongji Xu; Jian Li; Shen Zhong;

Can green technology innovation alleviate the regional energy dilemma? Evidence from 30 provinces in China

Abstract

High energy intensity and energy consumption structure are the main contradictions restricting China’s green economic growth. Green technology innovation is an important factor to alleviate the energy dilemma. Referring to the IPC Green Inventory launched by the World Intellectual Property Organization, the green patents of 30 provinces in China from 2004 to 2019 are screened. Based on the panel data of 30 provinces in China, this study empirically tests the impact of green technology innovation on energy intensity and energy structure by employing fixed effect model and quantile regression model. The empirical results show that green technology innovation can significantly reduce energy intensity and energy structure, and the long-term effect is obviously higher than the short-term effect. Compared with the green utility model patent representing general innovation, the green invention patent representing disruptive innovation expresses more momentous long-term and short-term effect. The sustainable effect of green technology innovation will gradually weaken with the reduction of energy intensity and energy structure. For provinces with low energy structure, the impact of green technology innovation is no longer significant. Instrumental variable method and robustness test prove that the conclusion of this study is robust. This study provides support for the government and enterprises to promote technological innovation and play a part in alleviating the energy dilemma.

Related Organizations
Keywords

quantile regression model, energy intensity, energy structure, fixed effect model, Environmental sciences, green technology innovation, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold