Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Marine ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2024 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of climate change on the kelp Laminaria digitata – simulated Arctic winter warming

Authors: Moritz Trautmann; Inka Bartsch; Margot Bligh; Margot Bligh; Hagen Buck-Wiese; Jan-Hendrik Hehemann; Jan-Hendrik Hehemann; +7 Authors

Impact of climate change on the kelp Laminaria digitata – simulated Arctic winter warming

Abstract

The Arctic is seasonally exposed to long periods of low temperatures and complete darkness. Consequently, perennial primary producers have to apply strategies to maximize energy efficiency. Global warming is occurring in the Arctic faster than the rest of the globe. The highest amplitude of temperature rise occurs during Polar Night. To determine the stress resistance of the ecosystem-engineering kelp Laminaria digitata against Arctic winter warming, non-meristematic discs of adult sporophytes from Porsangerfjorden (Finnmark, Norway) were kept in total darkness at 0°C and 5°C over a period of three months. Physiological variables, namely maximum quantum yield of photosynthesis (Fv/Fm) and dry weight, as well as underlying biochemical variables including pigments, storage carbohydrates, total carbon and total nitrogen were monitored throughout the experiment. Although all samples remained in generally good condition with Fv/Fm values above 0.6, L. digitata performed better at 0°C than at 5°C. Depletion of metabolic products resulted in a constant decrease of dry weight over time. A strong decrease in mannitol and laminarin was observed, with greater reductions at 5°C than at 0°C. However, the total carbon content did not change, indicating that the sporophytes were not suffering from “starvation stress” during the long period of darkness. A decline was also observed in the accessory pigments and the pool of xanthophyll cycle pigments, particularly at 5°C. Our results indicate that L. digitata has a more active metabolism, but a lower physiological and biochemical performance at higher temperatures in the Arctic winter. Obviously, L. digitata is well adapted to Arctic Polar Night conditions, regardless of having its distributional center at lower latitudes. Despite a reduced vitality at higher temperatures, a serious decline in Arctic populations of L. digitata due to winter warming is not expected for the near future.

Keywords

Fv/Fm, pigments, Science, Q, mannitol, General. Including nature conservation, geographical distribution, C:N, QH1-199.5, Polar Night, laminarin, Arctic Amplification, Arctic amplification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold