
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessing extreme significant wave height in China’s coastal waters under climate change

Accurately estimating the return values of significant wave height is essential for marine and coastal infrastructure, particularly as climate change intensifies the frequency and intensity of extreme wave events. Traditional models, which assume stationarity in wave data, often underestimate future risks by neglecting the impacts of climate change on wave dynamics. Combining time series decomposition and recurrence analysis, the research develops a nonstationary framework to predict significant wave height. The stochastic component is modelled using a stationary probability distribution, while the deterministic component is predicted based on sea surface temperature projections from CMIP6 climate scenarios. The model evaluation demonstrates strong predictive capability for both stochastic and deterministic components. Application of the model to China’s coastal waters reveals significant discrepancies between stationary and nonstationary return value estimates. Compared to conventional distribution models, the nonstationary model predicts substantial increases in extreme wave heights. These findings underscore the importance of adopting nonstationary models to more accurately assess future risks posed by extreme wave events in a changing climate.
- Ocean University of China China (People's Republic of)
significant wave height, climate change, Science, Q, nonstationary model, General. Including nature conservation, geographical distribution, coastal engineering, return value, QH1-199.5
significant wave height, climate change, Science, Q, nonstationary model, General. Including nature conservation, geographical distribution, coastal engineering, return value, QH1-199.5
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
