Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Nuclear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Nuclear Engineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Nuclear Engineering
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cradle to grave: the importance of the fuel cycle to molten salt reactor sustainability

Authors: Joanna McFarlane;

Cradle to grave: the importance of the fuel cycle to molten salt reactor sustainability

Abstract

Advanced reactor technologies are being considered for the next-generation of nuclear power plants. These plants are designed to have a smaller footprint, run more efficiently at higher temperatures, have the flexibility to meet specific power or heating needs, and have lower construction costs. This paper offers a perspective on molten salt reactors, promoted as having a flexible fuel cycle and close-to-ambient pressure operation. A complexity introduced by reducing the reactor footprint is that it may require low-enriched fuel for efficient operation, available from enrichment of the feed salt or by reusing actinides from existing used nuclear fuel (UNF). Recycling UNF has the potential to reduce high-level waste, if done correctly. Release limits from UNF processing are stringent, and processes for waste reduction, fission gas trapping, and stable waste-form generation are not yet ready for commercial deployment. These complex processes are expensive to develop and troubleshoot because the feed is highly radioactive. Thus, fuel production and supply chain development must keep abreast of reactor technology development. Another aspect of reactor sustainability is the non-fuel waste streams that will be generated during operation and decommissioning. Some molten salt reactor designs are projected to have much shorter operational lifetimes than light-water reactors: less than a decade. A goal of the reactor sustainability effort is to divert these materials from a high-level waste repository. However, processing of reactor components should only be undertaken if it reduces waste. Economic and environmental aspects of sustainability are also important, but are not included in this perspective.

Keywords

QC717.6-718.8, salt processing, Plasma physics. Ionized gases, molten salt reactor fuel cycle, fuel salt waste disposition, waste generation, QC770-798, salt fuel preparation, Nuclear and particle physics. Atomic energy. Radioactivity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold