Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Algorithmsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Algorithms
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Algorithms
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GA−Reinforced Deep Neural Network for Net Electric Load Forecasting in Microgrids with Renewable Energy Resources for Scheduling Battery Energy Storage Systems

Authors: Chaoran Zheng; Mohsen Eskandari; Ming Li; Zeyue Sun;

GA−Reinforced Deep Neural Network for Net Electric Load Forecasting in Microgrids with Renewable Energy Resources for Scheduling Battery Energy Storage Systems

Abstract

The large−scale integration of wind power and PV cells into electric grids alleviates the problem of an energy crisis. However, this is also responsible for technical and management problems in the power grid, such as power fluctuation, scheduling difficulties, and reliability reduction. The microgrid concept has been proposed to locally control and manage a cluster of local distributed energy resources (DERs) and loads. If the net load power can be accurately predicted, it is possible to schedule/optimize the operation of battery energy storage systems (BESSs) through economic dispatch to cover intermittent renewables. However, the load curve of the microgrid is highly affected by various external factors, resulting in large fluctuations, which makes the prediction problematic. This paper predicts the net electric load of the microgrid using a deep neural network to realize a reliable power supply as well as reduce the cost of power generation. Considering that the backpropagation (BP) neural network has a good approximation effect as well as a strong adaptation ability, the load prediction model of the BP deep neural network is established. However, there are some defects in the BP neural network, such as the prediction effect, which is not precise enough and easily falls into a locally optimal solution. Hence, a genetic algorithm (GA)−reinforced deep neural network is introduced. By optimizing the weight and threshold of the BP network, the deficiency of the BP neural network algorithm is improved so that the prediction effect is realized and optimized. The results reveal that the error reduction in the mean square error (MSE) of the GA–BP neural network prediction is 2.0221, which is significantly smaller than the 30.3493 of the BP neural network prediction. Additionally, the error reduction is 93.3%. The error reductions of the root mean square error (RMSE) and mean absolute error (MAE) are 74.18% and 51.2%, respectively.

Keywords

neural network, Industrial engineering. Management engineering, microgrids, backpropagation (BP), QA75.5-76.95, T55.4-60.8, backpropagation (BP); electric load prediction; genetic algorithm (GA); microgrids; neural network; renewable energy resources (RESs), electric load prediction, genetic algorithm (GA), Electronic computers. Computer science, renewable energy resources (RESs)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
gold