Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Algorithmsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Algorithms
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Algorithms
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient Multi-Objective Simulation Metamodeling for Researchers

Authors: Ken Jom Ho; Ender Özcan; Peer-Olaf Siebers;

Efficient Multi-Objective Simulation Metamodeling for Researchers

Abstract

Solving multiple objective optimization problems can be computationally intensive even when experiments can be performed with the help of a simulation model. There are many methodologies that can achieve good tradeoffs between solution quality and resource use. One possibility is using an intermediate “model of a model” (metamodel) built on experimental responses from the underlying simulation model and an optimization heuristic that leverages the metamodel to explore the input space more efficiently. However, determining the best metamodel and optimizer pairing for a specific problem is not directly obvious from the problem itself, and not all domains have experimental answers to this conundrum. This paper introduces a discrete multiple objective simulation metamodeling and optimization methodology that allows algorithmic testing and evaluation of four Metamodel-Optimizer (MO) pairs for different problems. For running our experiments, we have implemented a test environment in R and tested four different MO pairs on four different problem scenarios in the Operations Research domain. The results of our experiments suggest that patterns of relative performance between the four MO pairs tested differ in terms of computational time costs for the four problems studied. With additional integration of problems, metamodels and optimizers, the opportunity to identify ex ante the best MO pair to employ for a general problem can lead to a more profitable use of metamodel optimization.

Related Organizations
Keywords

metamodel, Industrial engineering. Management engineering, QA75.5-76.95, T55.4-60.8, simulation, Electronic computers. Computer science, test environment, discrete multiple objective, optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold