Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Animalsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animals
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animals
Article . 2025
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Conference object . 2024
Data sources: DIGITAL.CSIC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bottom Temperature Effect on Growth of Multiple Demersal Fish Species in Flemish Cap, Northwest Atlantic

Authors: Krerkkrai Songin; Fran Saborido-Rey; Graham J. Pierce;

Bottom Temperature Effect on Growth of Multiple Demersal Fish Species in Flemish Cap, Northwest Atlantic

Abstract

This study investigates the effects of warming water on growth in seven demersal fish species including Atlantic cod (Gadus morhua), American plaice (Hippoglossoides platessoides), Greenland halibut (Reinhardtius hippoglossoides), roughhead grenadier (Macrourus berglax) and three species of redfish (Sebastes spp.) in the Northwest Atlantic and compares the changes in growth across species. Length-at-age data were collected from EU bottom trawl surveys from 1993 to 2018, and bottom temperature data were obtained from the Copernicus Marine Service. Generalised additive mixed models (GAMMs) were used to describe the temperature effects on growth. The analysis was carried out separately for males and females. Both sexes of all species except American plaice showed significant temperature effects on growth. To obtain the growth parameters, von Bertalanffy growth functions (VBGFs) were fitted to the predictions from best-fit GAMMs for all species and both sexes under five different bottom temperature scenarios (3, 3.5, 4, 4.5 and 5 °C). The predictions from all best-fit GAMMs were broadly similar in form to the fitted von Bertalanffy growth functions (R2 > 90%). Increased bottom temperature generally resulted in a decrease in the asymptotic length (L∞) and an increase in the growth rate (k). The species with the most dramatic increase in k over the temperature range of 3 °C to 5 °C was Atlantic cod, for which k increased from 0.05 to 0.13 year−1 in females and from 0.08 to 0.14 year−1 in males. The maximum length (Lmax), predicted by the VBGF at maximum age generally declined from 3 °C to 5 °C. The species with the most pronounced decline in Lmax was beaked redfish (S. mentella). An increase in the proportion of smaller individuals could impact population productivity and result in lower biomass available to fisheries. Uneven changes in fish growth in the warming ocean could also have wider ecological implications and alter the trophic landscape.

Country
Spain
Related Organizations
Keywords

asymptotic length, Veterinary medicine, marine ecology, Deep-sea, Cod, VBGF, Article, GAMM, climate change, QL1-991, General additive models, SF600-1100, Life-history, Climate change, Zoology, Fish growth

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Energy Research