
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Preliminary Investigation of the Performance of an Engine Equipped with an Advanced Axial Turbocharger Turbine

doi: 10.3390/app10217452
Stringent emission regulations and increased demand for improved fuel economy have called for advanced turbo technologies in automotive engines. The use of turbochargers on smaller engines is one such concept, but they are limited by a time delay in reaching the required boost during transient operation. The amount of turbocharger lag plays a key role in the driver’s perceived quality of a passenger vehicle’s engine response. This paper investigates an alternative method to the conventional design of a turbocharger turbine to improve the transient response of a passenger vehicle. The investigation utilises the Ford Eco-Boost 1.6 L petrol engine, an established production engine, equipped with a turbocharger of similar performance to the GT1548 produced by Honeywell. The commercially available Ricardo WAVE was used to model the engine. Comparing the steady-state performance showed that the axial turbine provides higher efficiencies at all operating conditions of an engine. The transient case demonstrated an improved transient response at all operating conditions of the engine. The study concluded that, by designing a similar sized axial turbine, the mass moment of inertia can be reduced by 12.64% and transient response can be improved on average by 11.76%, with a maximum of 21.05% improvement. This study provides encouragement for the wider application of this turbine type to vehicles operating on dynamic driving cycles such as passenger vehicles, light commercial vehicles, and certain off-road applications.
- Brunel University London United Kingdom
- Brunel University London United Kingdom
Technology, turbocharger, QH301-705.5, T, Physics, QC1-999, 621, Engineering (General). Civil engineering (General), 620, genetic algorithms, 629, Chemistry, TA1-2040, Biology (General), QD1-999, axial turbine, multidisciplinary design optimisation
Technology, turbocharger, QH301-705.5, T, Physics, QC1-999, 621, Engineering (General). Civil engineering (General), 620, genetic algorithms, 629, Chemistry, TA1-2040, Biology (General), QD1-999, axial turbine, multidisciplinary design optimisation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
