Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Flore (Florence Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2020
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Opportunities and Threats of Mediterranean Evergreen Sclerophyllous Woody Species Subjected to Extreme Drought Events

Authors: Bussotti, Filippo; Pollastrini, Martina;

Opportunities and Threats of Mediterranean Evergreen Sclerophyllous Woody Species Subjected to Extreme Drought Events

Abstract

Climate change and extreme drought and heat events impact the Mediterranean evergreen sclerophyllous vegetation in South Europe, especially in Iberian and Italian peninsula, where widespread crown defoliation and dieback have been observed since the 90s of the XX century. Field observations and long-term experiments showed different sensitivity of the various woody species, Quercus ilex and Arbutus unedo being prone to drought, whereas Phillyrea latifolia and Pistacia lentiscus appeared to be resistant. The present review aims at exploring the phylogenetic and evolutionary basis of the resistance (or susceptibility) to drought of Mediterranean vegetation and its possible mechanisms of resilience. The main findings are summarized as follows: (1) Mediterranean regions in the world are refuge areas for several plant evolutive lineages and migratory routes. Evergreen sclerophyllous species, currently presented in Mediterranean basin, evolved under different climatic conditions; (2) the evergreen habitus represents an adaptation to mild drought conditions. Deciduous (specially summer deciduous) species are better performing under severe drought and low air relative humidity than evergreen species; (3) severe drought events acts selectively by favouring the species evolved in the Quaternary era and those originated in drier regions; (4) the evergreen trees and shrubs are resilient to the severe drought events and can restore the pre-event condition by resprouting from dormant buds in the cambium tissue. This ability is related to the non-structural carbohydrate content in the parenchyma-rays in woody stems. The amount and availability of these strategic reserve can be compromised by frequent drought events; (5) plant seed regeneration can be affected by drought and seedling establishment may be limited by soil dryness and microenvironment conditions; (6) the role of phenotypic plasticity of the species and epigenetic responses in Mediterranean-type ecosystems, although discussed in few papers, is still poorly known. We hypothesize that instead of latitudinal (South to North) or altitudinal (lowland to upland) plant migrations, Mediterranean forest ecosystems may respond to climate change by modulating their species composition and community structure with genetic resources (i.e., taxonomic diversity) already present in loco. Changes in vegetation assemblages and community structure may lead changes in ecological and landscape ecosystem values, with changes in related ecosystem services. A redefinition of management criteria of natural resources and a pro-active silviculture to make forest ecosystems more resilient are required.

Country
Italy
Related Organizations
Keywords

Technology, QH301-705.5, drought resistance, T, Physics, QC1-999, evergreeness, resprouting capacity, Engineering (General). Civil engineering (General), sclerophylly, climate change, drought resistance, evergreeness, slcerophylly, resilience, resprounting capacity, severe drought events, species origin, vegetation changes, Chemistry, climate change, TA1-2040, Biology (General), resilience, QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
gold