
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessment of a Spalart–Allmaras Model Coupled with Local Correlation Based Transition Approaches for Wind Turbine Airfoils

doi: 10.3390/app11041872
handle: 11564/745933
This paper present recent advances in the development of local correlation based laminar–to–turbulent transition modeling relying on the Spalart–Allmaras equation. Such models are extremely important for the flow regimes involved in wind energy applications. Indeed, fully turbulent flow models are not completely reliable to predict the aerodynamic force coefficients. This is particularly significant for the wind turbine blade sections. In this paper, we focus our attention on two different transitional flow models for Reynolds–Averaged Navier–Stokes (RANS) equations. It is worth noting that this is a crucial aspect because standard RANS models assume a fully turbulent regime. Thus, our approaches couple the well–known γ– technique and logγ equation with the Spalart–Allmaras turbulence model in order to overcome the common drawbacks of standard techniques. The effectiveness, efficiency, and robustness of the above-mentioned methods are tested and discussed by computing several flow fields developing around airfoils operating at Reynolds numbers typical of wind turbine blade sections.
Technology, wind turbine airfoils, QH301-705.5, T, Physics, QC1-999, RANS equations, transition models, wind turbine airfoils; RANS equations; transition models; laminar separation bubble, Engineering (General). Civil engineering (General), Chemistry, laminar separation bubble, TA1-2040, Biology (General), QD1-999
Technology, wind turbine airfoils, QH301-705.5, T, Physics, QC1-999, RANS equations, transition models, wind turbine airfoils; RANS equations; transition models; laminar separation bubble, Engineering (General). Civil engineering (General), Chemistry, laminar separation bubble, TA1-2040, Biology (General), QD1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
