
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Hybrid Bald Eagle Search Algorithm for Time Difference of Arrival Localization

doi: 10.3390/app12105221
The technology of wireless sensor networks (WSNs) is developing rapidly, and it has been applied in diverse fields, such as medicine, environmental control, climate prediction, monitoring, etc. Location is one of the critical fields in WSNs. Time difference of arrival (TDOA) has been widely used to locate targets because it has a simple model, and it is easy to implement. Aiming at the problems of large deviation and low accuracy of the nonlinear equation solution for TDOA, many metaheuristic algorithms have been proposed to address the problems. By analyzing the available literature, it can be seen that the swarm intelligence metaheuristic has achieved remarkable results in this domain. The aim of this paper is to achieve further improvements in solving the localization problem by TDOA. To achieve this goal, we proposed a hybrid bald eagle search (HBES) algorithm, which can improve the performance of the bald eagle search (BES) algorithm by using strategies such as chaotic mapping, Lévy flight, and opposition-based learning. To evaluate the performance of HBES, we compared HBES with particle swarm algorithm, butterfly optimization algorithm, COOT algorithm, Grey Wolf algorithm, and sine cosine algorithm based on 23 test functions. The comparison results show that the proposed algorithm has better search performance than other reputable metaheuristic algorithms. Additionally, the HBES algorithm was used to solve the TDOA location problem by simulating the deployment of different quantities of base stations in a noise situation. The results show that the proposed method can obtain more consistent and precise locations of unknown target nodes in the TDOA localization than that of others.
- Guizhou University China (People's Republic of)
- Guizhou University China (People's Republic of)
chaos mapping, Technology, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), Chemistry, time difference of arrival; bald eagle search algorithm; location; chaos mapping; opposition-based learning, bald eagle search algorithm, time difference of arrival, opposition-based learning, TA1-2040, Biology (General), QD1-999, location
chaos mapping, Technology, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), Chemistry, time difference of arrival; bald eagle search algorithm; location; chaos mapping; opposition-based learning, bald eagle search algorithm, time difference of arrival, opposition-based learning, TA1-2040, Biology (General), QD1-999, location
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
