
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparative Evaluation of Different following Mechanisms in VR Guided Tour: A Preliminary Study

doi: 10.3390/app12199630
Given virtual reality (VR)’s popularity, VR already impacts various applications such as education and tourism. In the above applications, users usually need to follow a specific target, such as a teacher or a tour guide, to explore and learn from the environment. However, because of the constraint with visual senses and unintuitive locomotion, following a target in VR is not as easy as doing it in real life. As a result, the user may not concentrate on the audio narration or the surroundings. Therefore, finding a following mechanism that can help the user concentrate and learn in VR is important. In this paper, we focus on the following techniques in VR. We propose four types of following mechanisms: limited (which restricts the user’s ability to move), semi-limited (which constrains the user’s range of activity), improved semi-limited (with visual assistance), and not limited (user’s movement is not constrained). This study consisted of 29 participants divided into four groups and aimed to evaluate how the following mechanisms affect user experience and make users more concentrated in the virtual world. The experiment shows that the semi-limited following mechanism with visual assistance is superior to the other three types in the performance of the touring experience and helping users pay attention to the tour content.
- Feng Chia University Taiwan
- Feng Chia University Taiwan
Technology, QH301-705.5, T, Physics, QC1-999, virtual environment; following techniques; VR-guided tour, Engineering (General). Civil engineering (General), following techniques, Chemistry, TA1-2040, Biology (General), virtual environment, VR-guided tour, QD1-999
Technology, QH301-705.5, T, Physics, QC1-999, virtual environment; following techniques; VR-guided tour, Engineering (General). Civil engineering (General), following techniques, Chemistry, TA1-2040, Biology (General), virtual environment, VR-guided tour, QD1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
