Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CNR ExploRA
Article . 2023
Data sources: CNR ExploRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effective Microorganisms and Olive Mill Wastewater Used as Biostimulants to Improve the Performance of Tanacetum balsamita L., a Medicinal Plant

Authors: Faraloni C; Giordano C; Arcidiaco L; Benelli C; Di Lonardo S; Anichini M; Stefani F; +1 Authors

Effective Microorganisms and Olive Mill Wastewater Used as Biostimulants to Improve the Performance of Tanacetum balsamita L., a Medicinal Plant

Abstract

The use of biostimulants and/or biofertilizers has acquired considerable importance and can contribute to the sustainable management agriculture, reducing the use of chemical fertilizers, pesticides, and water. This study aims to assess the effects of Effective Microorganisms (EM) and Olive Mill Wastewater (OMW) on the growth, photosynthetic performance and polyphenols content of the medicinal plant Tanacetum balsamita. The EM and OMW were used at two dilution rates. The EM was added to 5% v/v and 10% v/v, while OMW was added to 2.5% v/v and 5% v/v in plants at the early growth stage. After 75 days of treatment, all the treated plants had a leaf number and leaf area almost 2-fold higher than in the Control plants. Moreover, the treatments, at all the concentrations applied had a positive effect on the photosynthetic activity, with an improvement both in terms of the quantum yield of photosynthesis and electrons transport efficiency. The best photosynthetic and growth performances in the treated plants coincided with the higher production of phenolic compounds; indeed, after 75 days, the content of chlorogenic acid, caffeic acid, and isochlorogenic acid was even 2-fold of the Control plants. Also, rutin content was 1.28–1.50-fold respect to the Control extracts. The highest phenolic compound content was reflected by the highest antiradical activity, found in the extracts of the treated plants. The effectiveness of EM to increase the growth and quality of plants and in particular, the potential use of OMW on the cultivated crop was confirmed to this study.

Country
Italy
Keywords

olive mill wastewater, Technology, QH301-705.5, T, Physics, QC1-999, costmary; effective microorganism; olive mill wastewater; plant growth; polyphenols; trichomes; nutrient analysis; PCA, plant growth, Engineering (General). Civil engineering (General), Chemistry, trichomes, TA1-2040, Biology (General), costmary, effective microorganism, QD1-999, polyphenols

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold