
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Automated Analysis of Open-Ended Students’ Feedback Using Sentiment, Emotion, and Cognition Classifications

doi: 10.3390/app13042061
Students’ feedback is pertinent in measuring the quality of the educational process. For example, by applying lexicon-based sentiment analysis to students’ open-ended course feedback, we can detect not only their sentiment orientation (positive, negative, or neutral) but also their emotional valences, such as anger, anticipation, disgust, fear, joy, sadness, surprise, or trust. However, most currently used assessment tools cannot effectively measure emotional engagement, such as interest level, enjoyment, support, curiosity, and sense of belonging. Moreover, none of those tools utilize Bloom’s taxonomy for students’ learning-level assessment. In this work, we develop a user-friendly application based on NLP to help the teachers understand the students’ perception of their learning by analyzing their open-ended feedback. This allows us to examine the sentiment and the embedded emotions using a customized dictionary of emotions related to education. The application can also classify the students’ emotions according to Bloom’s taxonomy. We believe our application will help teachers improve their course delivery.
- Ajman University of Science and Technology United Arab Emirates
- Staffordshire University United Kingdom
- Staffordshire University United Kingdom
- Lebanese American University Lebanon
- Ajman University of Science and Technology United Arab Emirates
open-ended questions, Technology, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), Bloom’s taxonomy, Chemistry, students’ feedback, sentiment analysis, emotional analysis, TA1-2040, Biology (General), QD1-999
open-ended questions, Technology, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), Bloom’s taxonomy, Chemistry, students’ feedback, sentiment analysis, emotional analysis, TA1-2040, Biology (General), QD1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
