Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel Incremental Conductance Feedback Method with Integral Compensator for Maximum Power Point Tracking: A Comparison Using Hardware in the Loop

Authors: Sérgio André; Fernando Silva; Sónia Pinto; Pedro Miguens;

Novel Incremental Conductance Feedback Method with Integral Compensator for Maximum Power Point Tracking: A Comparison Using Hardware in the Loop

Abstract

Research on renewable energy sources and power electronic converters has been increasing due to environmental concerns. Many countries have established targets to decrease CO2 emissions and boost the proportion of renewable energy, with solar power being a prominent area of investigation in the recent literature. Techniques are being developed to optimize the energy recovered from PV cells and increase system efficiency, including modeling PV cells, the use of converter topologies to connect PV systems to high-power inverters, and the use of MPPT methods. Certain MPPT algorithms are intricate and demand high processing power. The literature describes several MPPT methods; however, the number of hardware resources required by MPPT algorithms is typically not disclosed. This work proposes a novel MPPT technique based on integral feedback conductance and incremental conductance error, considering the current dynamics of the boost converter. This MPPT algorithm is compared to the most widely used techniques in the literature and evaluates each method’s efficiency, performance, and computational needs using an HIL system. Comparisons are made with well-known MPPT algorithms, such as perturb and observe, incremental conductance, and newer techniques based on fuzzy logic and neural networks (NNs). As the NN that is most widely used in the literature depends on irradiation and temperature, an additional NN that is trained using the proposed method is also investigated.

Keywords

Technology, QH301-705.5, T, Physics, QC1-999, MPPT, HIL, Engineering (General). Civil engineering (General), photovoltaic, Chemistry, MPPT; HIL; photovoltaic; integral feedback conductance, TA1-2040, Biology (General), QD1-999, integral feedback conductance

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research